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Summary

In this paper we describe methods for addressing multiplicity issues arising in the
analysis of clinical trials with multiple endpoints and/or multiple dose levels. Effi-
cient “gatekeeping strategies” for multiplicity problems of this kind are developed.
One family of hypotheses (comprised of the primary objectives) is treated as a “gate-
keeper,” and the other family or families (comprised of secondary and tertiary objec-
tives) are tested only if one or more gatekeeper hypotheses have been rejected. We
discuss methods for constructing gatekeeping testing procedures using weighted Bon-
ferroni tests, weighted Simes tests, and weighted resampling-based tests, all within a
closed testing framework. The new strategies are illustrated using an example from
a clinical trial with co-primary endpoints, and using an example from a dose-finding
study with multiple endpoints. Power comparisons with competing methods show
the gatekeeping methods are more powerful when the primary objective of the trial
must be met.
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1 Introduction

Hypotheses tested in clinical trials are commonly divided into primary and secondary.
The primary hypothesis is related to the primary trial endpoint which describes the
most important features of the disease under study. O’Neill [1] defines the primary
endpoint as “a clinical endpoint that provides evidence sufficient to fully characterize
clinically the effect of a treatment in a manner that would support a regulatory
claim for the treatment.” In many cases, the primary hypothesis test determines the
overall conclusion from the trial. Secondary hypotheses also play an important role
in characterizing the effects of the study drug. However, a significant improvement in
a secondary endpoint in isolation is not generally considered as substantial evidence
of therapeutic benefit.

The interpretation of a positive finding with respect to a secondary outcome vari-
able depends heavily on its clinical importance. The following general types of sec-
ondary outcome variables are based on D’Agostino [2]:

Type I. Separate components of the primary trial objective. These may be very
important secondary endpoints that are difficult to incorporate into the for-
mal power calculation because the expected improvement is relatively small.
All-cause mortality plays this role in a large number of trials including cardio-
vascular and critical care studies.

Type II. Endpoints that help interpret the primary findings. These endpoints are
very helpful for understanding the big picture, e.g., understanding the benefits
with respect to various aspects of the disease. The effect of osteoarthritis drugs
is typically measured using pain and physical function indices; however, there
are other important outcome variables such as patient global assessment and
quality-of-life measures.

A similar classification of secondary endpoints is proposed in the guideline en-
titled “Points to consider on multiplicity issues in clinical trials” published by the
Committee for Proprietary Medicinal Products (CPMP) [3].

With this classification in mind, it is critically important to prospectively define
not only the hypotheses of interest but also a decision rule that will be used to guide
the decision-making process at study completion (Chi [4]). The decision rule can
have a flexible hierarchical structure with several data-driven clinical decision paths.
The clinical statistician “translates” this decision rule into a statistical procedure that
incorporates the interrelationships among the primary and secondary trial hypotheses.

Multiplicity problems arising in the context of primary and secondary trial hy-
potheses can be effectively dealt with using hierarchical testing procedures, also known
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as “gatekeeping procedures.” Consider two families of outcome variables, e.g., pri-
mary variables that can lead to new regulatory claims (gatekeeper) and secondary
variables that may become the basis for additional claims. The gatekeeper family is
tested without an adjustment for the other family, and the second family is examined
only if the gatekeeper has been successfully passed; see Bauer et al. [5], Westfall and
Krishen [6], and Gong, Pinheiro and DeMets [7].

Gatekeeping procedures proposed in the literature have been designed for the case
when the gatekeeper family is passed only if all of the hypotheses in the family have
been rejected, which we refer to as “serial” gatekeeping procedures. Serial procedures
can be too restrictive; for example, the requirement to reject all primary trial hy-
potheses before performing the secondary analyses may be inappropriate when the
co-primary endpoints can lead to separate regulatory claims. Similarly, the analysis
of individual doses of an experimental drug in a dose-finding setting can be enhanced
by using a hierarchical testing strategy, e.g., one examines the higher doses first and
studies the lower doses if at least one of the higher doses (but not necessarily both)
has shown a significant difference from the control.

Thus, while it is well known that one can proceed in serial fashion, it is apparently
not known that gatekeeping tests also can be performed in “parallel” fashion, where
one may proceed to the secondary family when at least one of the primary tests
exhibits significance. The main contribution of this paper is the development of such
parallel gatekeeping procedures.

An alternative to gatekeeping strategies is the prospective alpha allocation scheme
(PAAS) proposed by Moyé [8], in which the primary and secondary endpoints are
tested simultaneously at levels less than the common 0.05 threshold, ensuring that
the total threshold is still 0.05. This approach has been designed for the cases when
the secondary endpoints may potentially provide the basis for a new regulatory claim.
If the primary effects are truly null, the PAAS strategy is more powerful than a
gatekeeping strategy. On the other hand, when some of the primary hypotheses are
false, the power gains of gatekeeping strategies can be substantial, as we demonstrate
in Section 6.

In this paper, we develop parallel gatekeeping methods using the powerful closed
testing principle of Marcus et al. [9]. Section 2 introduces closed gatekeeping pro-
cedures based on the weighted version of the Bonferroni test. Section 3 discusses
extensions based on the weighted Simes test and parametric resampling. The de-
scribed gatekeeping strategies are illustrated in Sections 4 and 5 using two clinical
trial examples, one with two co-primary endpoints and the other a dose-finding study.
Section 6 compares the power of the various testing procedures.
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2 Bonferroni gatekeeping procedures

Consider a family of null hypotheses H1, . . . , Hm and assume that the hypotheses are
grouped into two families, F1 = {H1, . . . , Hk} and F2 = {Hk+1, . . . , Hm}. The first
family serves as a gatekeeper in the sense that F1 is tested without an adjustment
for F2 and Hk+1, . . . , Hm are examined only if the gatekeeper has been successfully
passed. It will be assumed throughout the paper that F1 is a parallel gatekeeper, i.e.,
Hk+1, . . . , Hm can be tested if at least one hypothesis in F1 has been rejected. In the
clinical trial context, F1 and F2 can represent sets of the primary and secondary trial
hypotheses, respectively. We are interested in constructing a testing strategy that
controls the familywise error rate (FWE) with respect to both families of hypotheses
in the strong sense (Hochberg and Tamhane [10]).

To apply the closed testing principle to the problem of testing F1 and F2, con-
sider an arbitrary intersection hypothesis H in the closed family associated with
H1, . . . , Hm. Let p1, . . . , pm denote the raw p-values for H1, . . . , Hm. Further, let pH
denote the p-value associated with H, obtained from a test procedure whose size is
no more than α when H is true. The closed testing principle states that an original
hypothesis is rejected provided all of the p-values associated with the intersection
hypotheses containing it are significant. Therefore, the adjusted p-value associated
with the hypothesis Hi equals p̃i = maxH∈Hi

pH , where Hi denotes the set of all in-
tersection hypotheses that contain Hi. The closed testing procedure rejects Hi when
p̃i ≤ α, and strongly controls the FWE at the α level, over the combined family
(H1, . . . , Hm). Note that the adjusted p-value depends on the test procedure chosen
to test H; the key to our gatekeeping procedures is the particular choice of tests for
each H, as we now describe.

Parallel gatekeeping procedures can be defined using weighted Bonferroni tests for
the intersection hypotheses. Select an intersection hypothesis H and consider a set
of m weights v1(H), . . . , vm(H) such that

0 ≤ vi(H) ≤ 1, vi(H) = 0 if δi(H) = 0,
m∑
i=1

vi(H) ≤ 1.

Here δi(H) = 1 if H ∈ Hi and 0 otherwise. The weighted Bonferroni p-value associ-
ated with H is given by

pH = min
1≤i≤m

(δi(H)pi/vi(H)),

where δi(H)pi/vi(H) = 1 if vi(H) = 0, and H is rejected if pH ≤ α. By the Bonferroni
inequality, the size of this test is no greater than α. Therefore, the resulting closed
testing procedure for the original hypotheses controls the FWE in the strong sense
for any set of weight vectors.
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The PAAS procedure fits with the current framework as follows: Suppose the
weights are fixed for all hypotheses (vi(H) ≡ vi) and that H is tested using p

(PAAS)
H =

min1≤i≤m δi(H)pi/vi. Then “reject all Hi for which pi ≤ viα” is equivalent to the

closed testing procedure using p-values p
(PAAS)
H for the intersection hypotheses. Viewed

as a closed testing procedure, one can see that (i) the weights for the PAAS proce-
dure are identical for all intersections, and (ii) the PAAS method uses extremely
conservative tests for some of the intersection hypotheses; for example, the levels of
the singletons are viα, potentially much less than α. More power can be obtained
using more powerful tests for the intersections; this is the essential contribution of
Holm [19].

In what follows we describe an FWE-controlling closed procedure for testing F1

and F2 that meets the following parallel gatekeeping criteria:

Condition 1. The adjusted p-values for the gatekeeper hypotheses H1, . . . , Hk do
not depend on the significance of the p-values associated with Hk+1, . . . , Hm.

Condition 2. The adjusted p-values associated with the secondary hypothesesHk+1, . . . , Hm

are greater than the minimum of p̃1, . . . , p̃k. This means that the hypotheses in
F2 can be tested if at least one hypothesis in F1 has been rejected.

The following algorithm shows how to choose the weight vectors to satisfy Condi-
tions 1 and 2. Suppose that w1, . . . , wm represent the relative importance of the null
hypotheses in F1 and F2 with w1+ . . .+wk = 1 and wk+1+ . . .+wm = 1. For example,
w1 may be set to 0.8 if H1 corresponds to the most important primary trial endpoint
and 0.2 may be distributed evenly across the remaining gatekeeper hypotheses asso-
ciated with the less important outcome variables. Using the wi, we define weights
vi(H) to use in a Bonferroni test of hypothesis H. Every hypothesis H will be tested
using a potentially different set of weights (v1(H), . . . , vm(H)).

Algorithm 1. Selecting the weights for the parallel Bonferroni gatekeeping
procedure

Select a hypothesis in the closed family and denote it by H. Consider the following
three mutually exclusive cases:

Case 1. If H contains all k gatekeeper hypotheses, i.e., H ∈ ∩ki=1Hi, let vi(H) = wi,
i = 1, . . . , k, and vi(H) = 0, i = k + 1, . . . ,m.

Case 2. If H contains r gatekeeper hypotheses (1 ≤ r ≤ k− 1), i.e., H ∈ (∪ki=1Hi)∩
(∩ki=1Hi)

c, let vi(H) = wiδi(H), i = 1, . . . , k, and

vi(H) = wiδi(H)(1−
k∑

j=1

wjδj(H))/
m∑

j=k+1

wjδj(H), i = k + 1, . . . ,m.
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Case 3. If H does not contain any gatekeeper hypotheses, i.e., H ∈ (∪ki=1Hi)
c, let

vi(H) = 0, i = 1, . . . , k, and

vi(H) = wiδi(H)/
m∑

j=k+1

wjδj(H), i = k + 1, . . . ,m.

For example, suppose there are two primary and two secondary hypotheses, with
equal weights assumed for all tests. There are 24− 1 = 15 intersection hypotheses H.
Table 1 shows the weights vi(H) that are used for each test. The parallel gatekeeping
procedure simply uses weighted Bonferroni tests for every intersection, with weights
as shown.

It is also instructive to compare the proposed weighting scheme with the weight-
ing scheme underlying serial gatekeeping procedures discussed by Westfall and Kr-
ishen [6]. Westfall and Krishen showed that serial gatekeeping strategies can be set up
by sequentially carrying out two weighted Holm tests [19], i.e., by using the following
algorithm for defining weight vectors in the closed test for H1, . . . , Hm:

Algorithm 2. The weighting scheme for the serial Bonferroni gatekeeping
procedure

Select a hypothesis in the closed family and denote it by H. Consider the following
two mutually exclusive cases:

Case 1. If H contains at least one gatekeeper hypothesis, i.e., H ∈ ∪ki=1Hi, let
vi(H) = wiδi(H)/

∑k
j=1wjδj(H), i = 1, . . . , k, and vi(H) = 0, i = k + 1, . . . ,m.

Case 2. If H does not contain any gatekeeper hypotheses, i.e., H ∈ (∪ki=1Hi)
c, let

vi(H) = 0, i = 1, . . . , k, and vi(H) = wiδi(H)/
∑m

j=k+1wjδj(H), i = k+1, . . . ,m.

One can verify that this choice of the weight vectors ensures that the adjusted
p-values associated with Hk+1, . . . , Hm are greater than the maximum of p̃1, . . . , p̃k.
In other words, one can test the hypotheses in F2 only if all hypotheses in F1 have
been rejected. To construct a parallel gatekeeping procedure, one needs to modify
the serial weighting scheme by assigning smaller weights to H1, . . . , Hk when H con-
tains some but not all gatekeeper hypotheses. For example, assume that H is the
intersection of H1, . . . , Hk−1 and Hk+1, . . . , Hm but does not contain Hk. The weight
vector associated with the serial gatekeeping approach (see Algorithm 2) isw1/

k−1∑
j=1

wj, . . . , wk−1/
k−1∑
j=1

wj, 0, . . . , 0

 .
It is important to note that weights for H1, . . . , Hk−1 are defined in such a way
that they add up to 1. This immediately implies that the weights assigned to the
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hypotheses in F2 are set to zero. To modify the serial weighting scheme, note that
the weights associated with the gatekeeper hypotheses contained in H do not add
up to 1 in this scenario, i.e., w1 + . . . + wk−1 < 1. This gives us an ability to
incorporate the secondary p-values into the decision rule. Specifically, the gatekeeper
hypotheses will receive the pre-specified weights, i.e., w1, . . . , wk−1, and the remainder
(i.e., 1 −∑k−1

j=1 wj) will be distributed among the secondary hypotheses according to
their importance, i.e., the following weight vector will be constructed:w1, . . . , wk−1, 0, wk+1

1−
k−1∑
j=1

wj

 , . . . , wm

1−
k−1∑
j=1

wj

 .
An important property of the parallel weighting scheme defined in Algorithm 1

is that the adjusted p-values associated with the gatekeeper hypotheses are given by
p̃i = pi/wi, i = 1, . . . , k. This implies that the hypotheses in F1 are tested using
the weighted Bonferroni tests that take into account the relative importance of the
hypotheses. As a result, the gatekeeper hypotheses will be rejected whenever their
Bonferroni-adjusted p-values are significant regardless of the values of pk+1, . . . , pm
and thus Condition 1 is satisfied. Further, it is easy to demonstrate that the adjusted
p-values p̃k+1, . . . , p̃m are greater than the minimum of p̃1, . . . , p̃k. The closed testing
procedure based on the weighting scheme in Algorithm 1 satisfies Condition 2 and
therefore it presents a valid parallel gatekeeping procedure.

3 Gatekeeping procedures based on Simes and re-

sampling tests

The gatekeeping procedure introduced in the previous section is based on the Bon-
ferroni test and thus ignores the correlation among the individual test statistics. It
is troubling that (i) Bonferroni-based tests are conservative for large correlation and
(ii) Bonferroni-based tests may all be insignificant even when all unadjusted p-values
are significant. Resampling-based procedures [11] can alleviate problem (i); while use
of Simes [12] test can alleviate problem (ii).

Simes proposed the following test for an intersection hypothesis H in the closed
family. Let t denote the number of elemental hypotheses contained in H and p(1)H ≤
p(2)H ≤ · · · ≤ p(t)H denote the ordered p-values for the elemental hypotheses. The
Simes p-value is then given by pH = tmin1≤j≤t p(j)H/j. Exact Type I error control
was proven under independence by Simes [12] and conservative Type I error control
was established under positive dependency among p-values by Sarkar [13]. This test
always produces p-values as small or smaller than the Bonferroni test, for which
pH = tp(1)H . The Simes test is popular because of its improved power and because of
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its close connection with procedures that control the false discovery rate (Benjamini
and Hochberg [14]).

Since our methodology uses weighted Bonferroni tests, we use the weighted Simes
test proposed by Benjamini and Hochberg [15]. Consider an intersection hypothesis H
and a weight vector vi(H), i = 1, . . . ,m. Let t and p(1)H , . . . , p(t)H be defined as above
and let v(1)H , . . . , v(t)H denote the weights corresponding to the ordered p-values. The
weighted Simes p-value is equal to

pH = min
1≤l≤t

p(l)H/
l∑

i=1

v(i)H .

Proof of Type I error control for this procedure under positive regression dependency
is given by Kling and Benjamini [16], thus any closed testing procedure that uses
such tests for the intersection hypotheses controls the FWE strongly under the same
conditions.

Resampling-based p-values for H1, . . . , Hm can be obtained by using parametric
resampling. The resulting adjusted p-values are useful (i) to assess robustness of the
Simes-based and Bonferroni-based tests to correlation that may be typical for clini-
cal trials, and (ii) to provide alternative large-sample multiplicity-adjusted p-values
that directly incorporate correlation. To obtain the parametric resampling-based p-
values, consider an intersection hypothesis H and let pH denote the observed p-value
(weighted Bonferroni or weighted Simes) for H. Assuming the usual multivariate nor-
mal MANOVA assumptions for our data, with true correlation matrix ρ, the “true
p-value” is pH(ρ) = P (PH ≤ pH |ρ). An approximate p-value is obtained as the
plug-in estimator pH(ρ̂), which can easily be simulated as follows (see Westfall and
Young [11], p. 122-125, and Westfall et. al [17], p.130-131, for details):

1. Given a consistent estimate of ρ (denoted by ρ̂), generate B sets of n indepen-
dent identically distributed N(0, ρ̂) vectors, where n is the combined sample
size and B is the number of simulations.

2. Compute a vector of raw p-values for H1, . . . , Hm from each simulated data
set. Calculate the combined Bonferroni or Simes p-value for each intersection
hypothesis in the closed family using the weight vectors defined by Algorithm
1. The obtained p-value for H from the ith simulated data set will be denoted
by p∗H(i).

3. The resampling-based p-value for H is equal to

p̂H(ρ̂) =
1

B

B∑
i=1

δ(p∗H(i) ≤ pH),

where δ(·) is the indicator function.
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4 A clinical trial with co-primary endpoints

Consider a clinical trial in patients with acute respiratory distress syndrome (ARDS).
The trial is conducted to compare one dose of a new drug to placebo. The therapeutic
benefits of experimental treatments in ARDS trials are commonly measured using the
number of days alive and off mechanical ventilation during a 28-day study period and
28-day all-cause mortality rate (see [18] for a detailed description of a recent trial in
ARDS patients). Let H1 and H2 denote the null hypotheses of no treatment effect
with respect to the number of ventilator-free days and 28-day all-cause mortality. It
typically takes fewer patients to detect a clinically relevant improvement in the num-
ber of ventilator-free days compared to 28-day mortality. For this reason, the number
of ventilator-free days often serves as the primary endpoint in ARDS trials. However,
either of these two endpoints can be used to make regulatory claims. Additionally,
there is interest in including information about the drug effects on the number of days
the patients were out of the intensive care unit (ICU-free days) and general quality
of life in the product label. Denote the secondary hypotheses associated with these
secondary endpoints by H3 and H4. We wish to develop a parallel gatekeeping proce-
dure that will test the secondary hypotheses only if at least one primary hypothesis
has been rejected.

Suppose that the weights for the two gatekeeper hypotheses are given by w1 = 0.9
and w2 = 0.1 and the secondary hypotheses are equally weighted, i.e., w3 = w4 = 0.5.
To define the adjusted p-values for H1, . . . , H4, consider the closed family associ-
ated with the four hypotheses of interest. The closed family includes 15 intersection
hypotheses. It is convenient to adopt the following binary representation of the in-
tersection hypotheses. If an intersection hypothesis equals H1, it will be denoted by
H1000. Similarly,

H1100 = H1 ∩H2, H1010 = H1 ∩H3, H1001 = H1 ∩H4, etc.

The decision matrix in Table 2 serves as a useful tool that facilitates the computation
of p-values for each intersection hypothesis in the closed family and also the adjusted
p-values associated with the four original hypotheses. The p-values shown in Table
2 are based on the weighted Bonferroni rule. To implement the Simes gatekeeping
procedure, one needs to test the individual intersection hypotheses using the weighted
Simes test introduced in Section 3.

Each row in Table 2 corresponds to an intersection hypothesis. The p-values
associated with the intersection hypotheses are defined using the weighting scheme
defined in Algorithm 1. The adjusted p-value for H1, H2, H3 and H4 equals the
largest p-value in the corresponding column, i.e.,

p̃1 = max[p1111, p1110, p1101, p1100, p1011, p1010, p1001, p1000], (1)
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p̃2 = max[p1111, p1110, p1101, p1100, p0111, p0110, p0101, p0100],

p̃3 = max[p1111, p1110, p1011, p1010, p0111, p0110, p0011, p0010],

p̃4 = max[p1111, p1101, p1011, p1001, p0111, p0101, p0011, p0001].

Inferences with respect to H1, H2, H3 and H4 are performed by comparing these
adjusted p-values with the pre-specified α.

As an illustration, Table 3 presents the raw and adjusted p-values produced by
the Bonferroni and Simes gatekeeping procedures under three scenarios. Table 3
shows that all four Bonferroni- and Simes-adjusted p-values are significant at the
0.05 level under the assumptions of Scenario 1. This means that the gatekeeping pro-
cedures have rejected both gatekeeper hypotheses and continued to test the secondary
hypotheses, both of which were also rejected. It is worth noting that the adjusted p-
values for the mortality endpoint are considerably larger than the corresponding raw
p-value. This is caused by the fact that this endpoint was considered less important
than the number of ventilator-free days and was assigned a small weight (w2 = 0.1).
Further, the adjusted p-values for the quality of life assessment are also larger than
the corresponding raw p-value. This happened because the gatekeeping procedures
adjusted the raw p-value upward to make it consistent with the p-value associated
with the more important gatekeeper hypothesis. In general, the amount by which
secondary p-values are adjusted upward is determined largely by the magnitude of
raw p-values associated with the gatekeeper hypotheses. Note also that the weighted
Simes test always produces p-values that are as small or smaller than those of the
weighted Bonferroni test. As a result, the Simes gatekeeping procedure produced ad-
justed p-values that are uniformly smaller than the corresponding Bonferroni-adjusted
p-values, without sacrificing Type I error control.

Considering Scenario 2, we see that an increase in the raw p-value for the number
of ventilator-free days did not affect the magnitude of the Bonferroni-adjusted p-value
for mortality. This highlights the fact that the gatekeeper hypotheses are tested in-
dependently of each other when the Bonferroni gatekeeping procedure is used. Since
both gatekeeping procedures have rejected the mortality hypothesis, the secondary
analyses were undertaken and, as a result, the secondary hypothesis with the highly
significant p-value was rejected. Again, the adjusted p-value for the quality of life
assessment is substantially larger than the raw one. The magnitude of the upward
adjustment simply reflects the fact that the more important gatekeeper null hypoth-
esis is likely to be true and thus the Bonferroni and Simes procedures need more
evidence against this secondary hypothesis to reject it.

Scenario 3 illustrates an important property of the Simes gatekeeping procedure.
This procedure is known to reject all null hypotheses whenever all raw p-values are
significant. Thus, the Simes gatekeeping procedure rejected all four null hypotheses
in Scenario 3, whereas the Bonferroni procedures failed to detect significance with
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respect to the number of ventilator- and ICU-free days.

5 A clinical trial with multiple endpoints and mul-

tiple doses

Table 4 summarizes the results of a dose-finding study in patients with hypertension.
The study was conducted to evaluate effects of low, medium and high doses of an
investigational drug compared to placebo. The effects were measured by computing
the reduction in systolic and diastolic blood pressure (SBP and DBP) measurements.

The design of the testing strategy is of course done prior to data collection, but
having the data visible helps to clarify what is done. In this study, it was felt a priori
that (i) SBP is more indicative of true effect than DBP, and hence was placed higher
in the hierarchy, and (ii) both the medium and high doses where considered equally
important, and potentially equally powerful, while the lower dose was considered
less likely to exhibit significance. Accordingly, the following four families of null
hypotheses were considered: F1 was comprised of the null hypotheses related to the
High vs. Placebo and Medium vs. Placebo comparisons for SBP; F2 was comprised
of the null hypotheses related to the High vs. Placebo and Medium vs. Placebo
comparisons for DBP; F3 contained the null hypothesis for the Low vs. Placebo
comparison for SBP; and F4 contained the null hypothesis for the Low vs. Placebo
comparison for DBP. The null hypotheses in F1 and F2 were tested in parallel fashion
and were equally weighted within each family, reflecting equal importance of the high
and medium doses.

Table 5 displays the raw and adjusted p-values for the individual tests. The raw
p-values were computed using the pooled-variance ANOVA two-sided contrast tests.
The hierarchical strategy is better in this application than is the usual Bonferroni-
Holm [19] or Simes-Hommel procedures [20]; the adjusted p-values for the Simes-
Hommel procedure are (in the vertical order of the table) 0.0348, 0.0032, 0.0573,
0.0080, 0.0430 and 0.0848, showing generally less significance. On the other hand,
this example shows a case where the serial gatekeeping strategy would have worked
better, since both hypotheses are significant in the first gate F1. However, had the
p-values for the first gate not both been significant, the serial strategy would not have
allowed continuation, as is allowed with our parallel testing procedure.

The resampling-based calculations shown in Table 5 used N=50,000,000, so that
the Monte Carlo error is very small. We can see that, while resampling generally
makes the adjusted p-values smaller, as is guaranteed for Bonferroni tests and has
been proven recently for weighted Simes tests with positively dependent tests statis-
tics [21], the results are not much affected by correlation. Thus, as correlation has
little effect on the adjusted p-values, we can recommend general use of the procedures
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without parametric resampling, except perhaps in borderline cases. (On the other
hand, if non-normality is a great concern, then one should consider non-parametric
resampling).

6 Power comparisons

A study was conducted to compare the performance of the Bonferroni, Simes and
PAAS testing procedures in the case of four null hypotheses grouped into two families
(e.g., two primary and two secondary hypotheses). It was assumed that the four
individual null hypotheses are of the form

Hi = {µi = 0}, i = 1, 2, 3, 4,

where µ1, . . . , µ4 represent the means of four normally distributed random variables
X1, . . . , X4 with standard deviation 1 and common correlation coefficient ρ. The
unadjusted two-sided p-values were defined as pi = 2 min[Φ(Xi), 1 − Φ(Xi)], i =
1, . . . , 4, where Φ denotes the cumulative distribution function of the standard normal
distribution.

The Bonferroni and Simes gatekeeping procedures were performed under the as-
sumption that the null hypotheses were equally weighted within each family, i.e.,
w1 = · · · = w4 = 0.5. The adjusted p-values associated with these two gatekeep-
ing procedures were computed as outlined in Sections 2 and 3. Two versions of the
PAAS method were used. First, the four null hypotheses were weighted equally and
the adjusted p-values were defined as p̃i = 4pi, i = 1, . . . , 4. Second, the two primary
hypotheses received more weight and the PAAS-adjusted p-values were defined as
follows:

p̃1 = 2.5p1, p̃2 = 2.5p2, p̃3 = 10p3, p̃4 = 10p4.

Results for Bonferroni and Simes were obtained using simulation with 1,000,000 sam-
ples; all PAAS results were calculated analytically.

Table 6 summarizes the results of the study. It shows that the PAAS procedures
are more powerful than the gatekeeping procedures with respect to the secondary
analyses when the primary null hypotheses are both true (µ1 = µ2 = 0), but that
there are substantial power gains from using the Bonferroni and Simes gatekeeping
procedures for testing the primary variables. In particular, if the regulatory mandate
is to show a significance in the primary analysis, then the gatekeeping procedures
show uniformly higher probability of meeting the regulatory mandate, as shown in
the “F1” column.

It is important to emphasize that the PAAS procedures treat the four hypotheses
in the two families as co-primary and test them simultaneously. This approach is
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justified when secondary endpoints may provide the basis for a new regulatory claim
(Type I secondary endpoints by the D’Agostino classification [2]). Under the gate-
keeping strategies considered here, one does not test the secondary hypotheses unless
at least one primary null hypothesis has been rejected. In other words, the gatekeep-
ing approach assumes that the secondary findings will not lead to separate regulatory
claims but can only provide supportive evidence for the claims based on the primary
endpoints (Type II secondary endpoints by the D’Agostino classification).

As suggested by Westfall and Krishen [6], the greatest gains in efficiency for the
gatekeeping approach occur when the primary hypotheses have higher power; in our
simulation we see that the gatekeeping procedures beat the PAAS procedures even for
the secondary endpoints in these cases. An example of such a case is in dose-finding,
where the higher doses are expected to exhibit higher power than the lower doses.

However, in fairness, it is important to note that for many disorders the sec-
ondary endpoints have greater power than the primary endpoints. Examples include
oncology, where regulatory agencies may insist that sponsors demonstrate a benefit
with respect to survival (time to death), although a key secondary endpoint, time-
to-progressive-disease, generally has greater power. Another example is in depres-
sion, where regulators have insisted on the 17-item Hamilton Depression Scale total
score as the primary outcome measure. The literature contains several subscales that
have been shown to have greater power in discriminating between active drug and
placebo [22]. So it may be true that under such scenarios the PAAS method would
have greater power at detecting significant differences from a set of two primary and
two secondary endpoints, for example. However, regulatory agencies generally would
not consider the study as supporting efficacy unless the primary null hypothesis was
rejected.

7 Discussion

This paper presents a framework for performing parallel gatekeeping inferences and
outlines applications of gatekeeping procedures in clinical trials. Using the closed
testing principle, we show how to construct powerful testing procedures that allow
one to proceed to lower levels of the hierarchy when not all of the co-primary tests
are significant. The benefits of the parallel gatekeeping approach are (i) regulatory
acceptability in cases where a front gate of co-primary endpoints must be passed
with at least one significance, and (ii) good power. The gatekeeping approach is most
appropriate when the secondary analyses do not lead to separate regulatory claims
but play a supportive role.

While the method is easiest to motivate and present in terms of Bonferroni-based
gatekeeping procedure, we see power gains with the weighted Simes-based procedure
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and can therefore recommend it over the Bonferroni method. Furthermore, we find
that the Simes gatekeeping procedure is relatively robust to correlation structure in a
clinical example when correlations induced by multiple dose group comparisons and
multiple endpoints, and therefore using that modification to accommodate correlation
may not generally be needed.
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Table 1 Weights assigned to the intersection hypothesis tests

Intersection Weights
hypothesis H1 H2 H3 H4

H1 ∩H2 ∩H3 ∩H4 0.5 0.5 0.0 0.0
H1 ∩H2 ∩H3 0.5 0.5 0.0 0.0
H1 ∩H2 ∩H4 0.5 0.5 0.0 0.0
H1 ∩H2 0.5 0.5 0.0 0.0
H1 ∩H3 ∩H4 0.5 0.0 0.25 0.25
H1 ∩H3 0.5 0.0 0.5 0.0
H1 ∩H4 0.5 0.0 0.0 0.5
H1 0.5 0.0 0.0 0.0
H2 ∩H3 ∩H4 0.0 0.5 0.25 0.25
H2 ∩H3 0.0 0.5 0.5 0.0
H2 ∩H4 0.0 0.5 0.0 0.5
H2 0.0 0.5 0.0 0.0
H3 ∩H4 0.0 0.0 0.5 0.5
H3 0.0 0.0 1.0 0.0
H4 0.0 0.0 0.0 1.0
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Table 2 Decision matrix for the parallel Bonferroni gatekeeping procedure

Intersection P -values for intersection Original hypotheses
hypothesis hypotheses H1 H2 H3 H4

H1111 p1111 = min(p1/0.9, p2/0.1) p1111 p1111 p1111 p1111
H1110 p1110 = min(p1/0.9, p2/0.1) p1110 p1110 p1110 0
H1101 p1101 = min(p1/0.9, p2/0.1) p1101 p1101 0 p1101
H1100 p1100 = min(p1/0.9, p2/0.1) p1100 p1100 0 0
H1011 p1011 = min(p1/0.9, p3/0.05, 2p4/0.05) p1011 0 p1011 p1011
H1010 p1010 = min(p1/0.9, p3/0.1) p1010 0 p1010 0
H1001 p1001 = min(p1/0.9, p4/0.1) p1001 0 0 p1001
H1000 p1000 = p1/0.9 p1000 0 0 0
H0111 p0111 = min(p2/0.1, p3/0.45, p4/0.45) 0 p0111 p0111 p0111
H0110 p0110 = min(p2/0.1, p3/0.9) 0 p0110 p0110 0
H0101 p0101 = min(p2/0.1, p4/0.9) 0 p0101 0 p0101
H0100 p0100 = p2/0.1 0 p0100 0 0
H0011 p0011 = min(p3/0.5, p4/0.5) 0 0 p0011 p0011
H0010 p0010 = p3 0 0 p0010 0
H0001 p0001 = p4 0 0 0 p0001

Note: The table shows p-values associated with the intersection hypotheses. The
adjusted p-values for the original hypotheses H1, H2, H3 and H4 are defined as the
largest p-value in the corresponding column in the right-hand panel of the table (see
Equation (1)).
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Table 3 Bonferroni and Simes gatekeeping procedures in the acute respi-
ratory distress syndrome trial

Adjusted p-value
Family Endpoint Weight Raw p-value Bonferroni Simes

Scenario 1
Primary Vent-free days 0.9 0.024 0.0267 0.0260
Primary Mortality 0.1 0.003 0.0300 0.0260
Secondary ICU-free days 0.5 0.026 0.0289 0.0260
Secondary Quality of life 0.5 0.002 0.0267 0.0253

Scenario 2
Primary Vent-free days 0.9 0.084 0.0933 0.0840
Primary Mortality 0.1 0.003 0.0300 0.0300
Secondary ICU-free days 0.5 0.026 0.0933 0.0840
Secondary Quality of life 0.5 0.002 0.0400 0.0400

Scenario 3
Primary Vent-free days 0.9 0.048 0.0533 0.0480
Primary Mortality 0.1 0.003 0.0300 0.0300
Secondary ICU-free days 0.5 0.026 0.0533 0.0480
Secondary Quality of life 0.5 0.002 0.0400 0.0400
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Table 4 Results of a dose-finding study in patients with hypertension

Treatment group n Change in SBP (mmHg) Change in DBP (mmHg)
Mean Std. Dev. Mean Std. Dev.

Placebo 29 4.02 7.85 2.31 5.88
Low dose 23 −2.16 8.71 −0.67 5.51
Medium dose 24 −5.03 11.01 −3.18 6.89
High dose 24 −2.60 8.96 −1.44 6.15
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Table 6 Estimated power of the Bonferroni (B), Simes (S), PAAS with
equal weights (PE) and PAAS with unequal weights (PU) testing proce-
dures in the case of two primary and two secondary hypotheses

Parameters H1 H3 F1

(µ1, µ2, µ3, µ4; ρ) B S PE PU B S PE PU B S PE PU
(0, 0, 0, 0; 0) 2.4 2.4 1.3 2.0 0.2 0.2 1.3 0.5 4.8 4.8 2.5 4.0
(0, 0, 3, 3; 0) 2.4 2.4 1.3 2.0 3.6 3.7 69.2 57.7 4.8 4.8 2.5 4.0
(3, 3, 3, 3; 0) 77.8 82.3 69.2 75.0 76.2 78.2 69.2 57.7 94.9 95.4 90.5 93.7
(3, 3, 0, 0; 0) 77.8 77.8 69.2 75.0 2.1 2.2 1.3 0.5 94.9 94.9 90.5 93.7
(3, 3, 2, 2; 0) 77.8 79.5 69.2 75.0 39.0 41.5 30.9 21.0 94.9 95.1 90.5 93.7
(4, 4, 3, 3; 0) 96.1 97.4 93.3 95.3 82.6 83.6 69.2 57.7 99.9 99.9 99.6 99.8
(4, 4, 2, 2; 0) 96.1 96.6 93.3 95.3 44.2 45.8 30.9 21.0 99.9 99.9 99.6 99.8
(2, 2, 3, 3; 0) 40.6 44.6 30.9 37.2 49.8 52.0 69.2 57.7 64.5 65.4 52.3 60.6
(3, 3, 4, 4; 0) 77.8 83.8 69.2 75.0 92.2 93.0 93.3 88.4 94.9 95.5 90.5 93.7
(2, 2, 4, 4; 0) 40.5 45.9 30.9 37.2 62.3 63.7 93.3 88.4 64.5 65.7 52.3 60.6
(0, 0, 0, 0; .5) 2.4 2.4 1.3 2.0 0.4 0.5 1.3 0.5 4.5 4.5 2.4 3.7
(0, 0, 3, 3; .5) 2.4 2.6 1.3 2.0 2.7 2.9 69.2 57.7 4.5 4.6 2.4 3.7
(3, 3, 3, 3; .5) 77.8 81.4 69.2 75.0 74.8 77.0 69.2 57.7 89.7 90.2 83.7 88.0
(3, 3, 0, 0; .5) 77.8 77.8 69.2 75.0 1.7 1.9 1.3 0.5 89.7 89.7 83.7 88.0
(3, 3, 2, 2; .5) 77.8 78.8 69.2 75.0 42.0 44.2 30.9 21.0 89.7 89.8 83.7 88.0
(4, 4, 3, 3; .5) 96.1 96.8 93.3 95.3 81.5 82.7 69.2 57.7 99.2 99.2 98.2 98.9
(4, 4, 2, 2; .5) 96.1 96.2 93.3 95.3 44.8 46.4 30.9 21.0 99.2 99.2 98.2 98.9
(2, 2, 3, 3; .5) 40.5 45.8 30.9 37.2 50.5 52.5 69.2 57.7 56.6 57.8 45.5 52.9
(3, 3, 4, 4; .5) 77.8 83.1 69.2 75.0 87.8 88.9 93.3 88.4 89.7 90.5 83.7 88.0
(2, 2, 4, 4; .5) 40.5 46.4 30.9 37.2 56.1 57.6 93.3 88.4 56.6 58.0 45.5 52.9

Note: F1 denotes the probability of passing the front gate.


